Which set existence axioms are needed to prove the separable Hahn-Banach theorem?
نویسندگان
چکیده
منابع مشابه
Separable Banach Space Theory Needs Strong Set Existence Axioms
We investigate the strength of set existence axioms needed for separable Banach space theory. We show that a very strong axiom, Π1 comprehension, is needed to prove such basic facts as the existence of the weak-∗ closure of any norm-closed subspace of `1 = c0. This is in contrast to earlier work [6, 4, 7, 23, 22] in which theorems of separable Banach space theory were proved in very weak subsys...
متن کاملHow Incomputable is the Separable Hahn-Banach Theorem?
We determine the computational complexity of the Hahn-Banach Extension Theorem. To do so, we investigate some basic connections between reverse mathematics and computable analysis. In particular, we use Weak König’s Lemma within the framework of computable analysis to classify incomputable functions of low complexity. By defining the multi-valued function Sep and a natural notion of reducibilit...
متن کاملHow Much Incomputable Is the Separable Hahn - Banach Theorem
We determine the computational complexity of the Hahn-Banach Extension Theorem. To do so, we investigate some basic connections between reverse mathematics and computable analysis. In particular, we use Weak König’s Lemma within the framework of computable analysis to classify incomputable functions of low complexity. By defining the multi-valued function Sep and a natural notion of reducibilit...
متن کاملThe Hahn-banach Theorem Implies the Existence of a Non Lebesgue-measurable Set
§0. Introduction. Few methods are known to construct non Lebesgue-measurable sets of reals: most standard ones start from a well-ordering of R, or from the existence of a non-trivial ultrafilter over ω, and thus need the axiom of choice AC or at least the Boolean Prime Ideal theorem BPI (see [5]). In this paper we present a new way for proving the existence of non-measurable sets using a conven...
متن کاملThe Hahn-banach Theorem Implies the Existence of a Non Lebesgue-measureable Set
Few methods are known to construct nonLebesgue-measurable sets of reals: most standard ones start from a well-ordering of R, or from the existence of a non-trivial ultrafilter over ω, and thus need the axiom of choice AC or at least the Boolean Prime Ideal theorem (BPI see [5]). In this paper we present a new way for proving the existence of non-measurable sets using a convenient operation of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Pure and Applied Logic
سال: 1986
ISSN: 0168-0072
DOI: 10.1016/0168-0072(86)90066-7